Biostat 537: Survival Analaysis TA Session 6

Ethan Ashby

February 20, 2024

・ロト・日本・日本・日本・日本・日本

Ethan Ashby

AFT Regression

Presentation Overview

2 Time Dependent Covariates

3 AFT Regression

▲□▶▲□▶▲□▶▲□▶ □ のへの

Ethan Ashby

AFT Regression

Review of Last Time

- 1 The Cox model enables testing, estimation, and inference from survival data under the proportional hazards assumption.
- 2 The partial likelihood is the basis for estimation and inference in the Cox model – its calculation relies on the rank ordering of the event times.
- 3 There exist exact and approximate methods to handling tied event times.
- (Partial) likelihood ratio tests and stepwise selection w/ AIC are model selection strategies.

Ethan Ashby Lecture 6

AFT Regression

Overview

2 Time Dependent Covariates

3 AFT Regression

・ロト・日本・日本・日本・日本・日本

Ethan Ashby

Regression Diagnostics

In classical regression problems, analysts often plot the residuals ($\hat{\epsilon}_i := y_i - \hat{f}(x_i)$) against covariates/fitted values to diagnose problems and suggest remedies to functional forms of covariates.

< • • • • •	<≣>	< ≣ >	- 2	$\mathcal{O} \mathcal{Q} \mathcal{O}$
--------------------	-----	-------	-----	---------------------------------------

Ethan Ashby

Regression Diagnostics

In classical regression problems, analysts often plot the residuals ($\hat{\epsilon}_i := y_i - \hat{f}(x_i)$) against covariates/fitted values to diagnose problems and suggest remedies to functional forms of covariates.

In linear regression, analysts often plot residuals versus leverage, where leverage is the influence that a particular observation has on your model.

▲□▶▲□▶▲臣▶▲臣▶ 臣 のへで

Ethan Ashby

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Regression Diagnostics

In classical regression problems, analysts often plot the residuals ($\hat{\epsilon}_i := y_i - \hat{f}(x_i)$) against covariates/fitted values to diagnose problems and suggest remedies to functional forms of covariates.

In linear regression, analysts often plot residuals versus leverage, where leverage is the influence that a particular observation has on your model.

Analogs exist for survival data!

Ethan Ashby			
Lecture 6			

AFT Regression

Martingale Residuals

Martingale residuals: $m_i := \delta_i - \hat{H}_0(t_i) \exp(x_i \hat{\beta})$

 Can reveal functional form misspecifications of covariate.

| 中 ト 🗐 ト 🛛 王 ト 王 - つへ(

Ethan Ashby

< □ > < 同 >

A B > A B >

AFT Regression

Jackknife Residuals

Some subjects may have a large influence on a Cox regression model.

Ethan Ashby
Lecture 6

Jackknife Residuals

Some subjects may have a large influence on a Cox regression model.

Jackknife residuals: difference between parameter estimate on the full data, $\hat{\beta}$, versus data where single case was deleted, $\hat{\beta}^{(-i)}$.

▲□▶▲□▶▲□▶▲□▶ = つくぐ

Ethan Ashby

Jackknife Residuals

Some subjects may have a large influence on a Cox regression model.

Jackknife residuals: difference between parameter estimate on the full data, $\hat{\beta}$, versus data where single case was deleted, $\hat{\beta}^{(-i)}$.

Can be calculated using 'residuals(model, type="dfbeta")' in R.

Ethan Ashby

< □ > < 同 >

A B M A B M

AFT Regression

Checking proportional hazards

The Cox model relies on the proportional hazards assumption. It is important to check its validity!

Ethan Ashby

AFT Regression

• 由 • 4 周 • 4 周 • 4 周 • 1 周

Strategy 1 for checking PH: cloglog plots

Under Cox model

$$S_{1}(t) = [S_{0}(t)]^{\exp(\beta)}$$
$$\implies \log(S_{1}(t)) = \exp(\beta) \cdot \log(S_{0}(t))$$
$$\implies \log(-\log(S_{1}(t))) = \beta + \log(-\log(S_{0}(t)))$$

This is called the *complementary log-log transformation*.

Hence, if proportional hazards holds, $\log(-\log(S_1(t)))$ and $\log(-\log(S_0(t)))$ should be parallel and separated by a constant.

			_	~ ~ ~
Ethan Ashby				
Lecture 6				

Strategy 2: Schoenfeld residuals

At the *i*-th failure time, the Schoenfeld residual is:

$$\hat{r}_i := x_i - \sum_{k \in R_i} x_k \cdot \frac{\exp(x_k\beta)}{\sum_{k \in R_i} \exp(x_k\beta)} = x_i - \bar{x}(t_i)$$

If proportional hazards holds, a plot of \hat{r}_i versus a covariate X should be flat line at zero.

Ethan Ashby	
Lecture 6	

Strategy 2: Schoenfeld residuals

If proportional hazards does NOT hold and the hazard ratio varies with *t*, then

$$\hat{\beta}(t) \approx \hat{\beta} + \mathbb{E}[\hat{r}_i]$$

Compute in R: 'cox.zph()'. Returns a p-value for a test of whether $\hat{\beta}(t)$ is constant.

< □ >	< 🗗 ►	< ≣ >	< ≣ ►	- 2	900

Ethan Ashby

AFT Regression

Strategy 2: Schoenfeld residuals

|--|

Ethan Ashby

AFT Regression

Overview

Cox Model Diagnostics

2 Time Dependent Covariates

3 AFT Regression

- 《曰》《卽》《臣》《臣》 - 臣 - 《	$\mathcal{D}\mathcal{A}$	C
------------------------	--------------------------	---

Ethan Ashby

Stanford Heart Transplant Study

- **1** The 1971 study showed that patients who received heart transplant (binary fixed covariate) lived longer than patients who did not ($p=7 \times 10^{-7}$).
- 2 Critique the inclusion of heart transplant as a fixed covariate in the Cox model above!

$\blacktriangleleft \square \models$	< 🗗 ►	< ≣ >	< ≣ ▶	- 2	900

Ethan Ashby

AFT Regression

Time Dependent Covariates in Cox Model

Recall the cox model assumes

 $h(t|X) = h_0(t)e^{X\beta}$

We can incorporate time-varying covariates

$$h(t|X) = h_0(t)e^{X(t)\beta}$$

The partial likelihood becomes

$$L(\beta) = \prod_{i=1}^{D} \frac{e^{x_i(t_i)\beta}}{\sum_{k \in R_i} e^{x_k(t_i)\beta}}$$

メロトメ母トメミトメミト ミーのへの

Ethan Ashby

In R

To fit a Cox model with time-dependent covariates, we must convert the time-to-event data into start-stop format.

	> sdata<-tmerge(heart.simple, heart.simple, id=id,
2	+ death=event(futime,fustat), transpl=tdc(wait.time)
)
3	> sdata
ŀ	Row id tstart tstop death transpl
5	1 2 0 5 1 0
5	2 5 0 17 1 0
7	3 10 0 11 0 0
3	4 10 11 57 1 1
)	5 12 0 7 1 0

Ethan Ashby

Now we fit a Cox model to the start-stop data with Surv(start, stop, event).

< □	▶ ◀ 🗗	▶ < ≣ ▶	< ≣ ►	- 2	うくで

Ethan Ashby

Time-varying coefficient

The Cox model can readily accommodate time-varying covariates of the form.

 $h(t|X) = h_0(t)e^{X(t)\beta}$

We can also consider time-varying coefficients

 $h(t|X) = h_0(t)e^{X\beta(t)}$

This is a much harder task and requires determining the *time-transfer function*.

			_	
Ethan Ashby				
Lecture 6				

Time Dependent Covariates 000000●

AFT Regression

Time-transfer function

1	<pre>>result.panc2.tt<-coxph(Surv(pfs)~stage.n+tt(stage.n), +</pre>					
	tt=function(x,t,)x*log(t))					
2	>result.pand	:2.tt				
3		coef	exp(coef)	se(coef)	Z	р
4	stage.n	6.01	407.339	3.060	1.96	0.050
5	tt(stage.n)	-1.09	0.338	0.589	-1.84	0.065

Hence $\beta(t) = 6.01 - 1.09 \log(t)$ under this tt function.

・ロト・母ト・ヨト・ヨー のへぐ

Ethan Ashby

AFT Regression ●00000

Overview

1 Cox Model Diagnostics

2 Time Dependent Covariates

3 AFT Regression

▲ロト▲母ト▲目ト▲目ト 目 のへの

Ethan Ashby

AFT Regression

Accelerated Failure Time (AFT) models

Dog years

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Ethan Ashby Lecture 6

AFT Models

Intuitively, AFT models assume that survival distributions have the same shape but are sped up or slowed down depending on covariates.

$$egin{aligned} & \mathcal{S}(t|X) = \mathcal{S}_0(e^{-\gamma X}t) \ & \Longleftrightarrow \ h(t|X) = e^{-\gamma X}h_0(e^{-\gamma X}t) \end{aligned}$$

Allows us to conclude that survival times for one-unit higher *X* are $e^{-\gamma}$ longer on average!

Ethan Ashby

Weibull AFT

Suppose we assume survival distribution follows a Weibull shape. We can inspect the Weibull hazard and show

$$h(t|X) = e^{-\gamma/\sigma X} h_0(t)$$

Implying that a Weibull AFT is also a proportional hazards model! It is also the only model that is AFT and PH!

▲ロト▲聞▶▲臣▶▲臣▶ 臣 のへの

Ethan Ashby

AFTs in R

>result.survreg.grp<-survreg(Surv(ttr,relapse)~grp,dist= "weibull") >summary(result.survreg.grp)

Value Std. Errorzp(Intercept)5.2860.332015.924.59e-57grppatchOnly-1.2510.4348-2.884.00e-03Log(scale)0.6890.09117.563.97e-14

Scale= 1.99

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

Ethan Ashby

Summary

- There exist residual-based diagnostics for examining functional form misspecification and PH assumptions in Cox models.
- Start-stop and time-varying coefficients are two ways to accommodate covariates that vary with time in Cox Models.
- 3 AFT models are fully parametric alternatives to Cox models for regression analysis which have appealing interpretations but

Ethan Ashby Lecture 6